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ABSTRACT

Many applications of robotS require that the same task be repeated a number of times. In
such applications, the errors associated with one cycle are also repeated every cycle of the
operation. An off-line learning control scheme is used here to modify the command
function which would result in smaller errors in the next operation. The learning scheme is
based on a knowledge of the errors and error rates associated with each cycle. Necessary
conditions for the iterative scheme to converge to zero errors are derived analytically

considering a second order servosystem model. Computer simulations show that the errors
are reduced at a faster rate if the error rate is included in the iteration scheme. The results
also indicate that the scheme may increase the magnitude of errors if the rate information is
not included in the iteration scheme. Modification of the command input using a phase and

gain adjustment is also proposed to reduce the errors with one attempt. The scheme is then
applied to a computer model of a robot system similar to PUMA 560. Improved
performance of the robot is shown by considering various cases of trajectory tracing. The
scheme is also applied to a real robot PUMA 560. The results show that the proposed
scheme can be successfully used to improve the performance of actual robots within the

limitations of the repeatability and noise characteristics of the robot.
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1.0 INTRODUCTION

Several methods of performance improvement of robots have been attemptedpreviously by
many researchers. Some of these employ on-line adaptive control schemes 1,2 considerin,,
factors such as flexibility of the arms and variation of loads. Such control schemes axe _'

required for trajectories which are not defined a priori or require accurate trajectory control
in the flu'st attempt. For repetitive type of operations, as most commonly required in
industrial applications, such as welding, cutting or sealing, a control scheme which can
learn based on its previous performance appears to be more attractive because of the

stmplicity of the technique. A method to obtain a modified command input signal called

Computed Repetitive Adjustment Technique (CREATE)3 is embodied in an algorithm for

correcting a robot's motion in successive testing of the same job. This repetitive testing is
continued until the trajectory errors are within the acceptable bound before performing the

actual work. The technique was later applied4,5 to improve the performance of a
mathematical model of a three-link robot arm.

A scheme very similar to CREATE was studied by Craig6 for application by considering a
lineaxized model of the robot. Conditions for the convergence of the scheme to yield
minimum errors were obtained with the assumption that several critical parameters of the

system are known. Arimoto 7 proposed a learning scheme based on measuring error rate
only. He later extended8,9 the control scheme to include the error and error rate

information. However, the conditions 8 he arrived at are found to be unsatisfactory.

Several other researchers 10,11,12 have attempted to obtain convergence conditions for the

iteration scheme, but the analysis are generally inadequate. Togai 13,14 obtained interesting
algorithms by using discrete analysis and by applying optimal control techniques. An

algorithm based on optimal control technique is also given by Harokopos 15 for continuous
systems. Bedewil6 used CREATE technique to refine the performance of the robot

starting with a dynamic inverse of the model of the system. In this paper, the learning

control scheme proposed by Arimoto 8 will be considered. Analysis of the scheme will be
attempted with a servosystem model. The scheme will then be applied to a mathematical
model of a three-link robot to show the improvement in performance.

2.0 SECOND ORDER SERVOSYSTEM MODEL

2.1 Description of the Servosystem Model

A servo control design is given in this section which will be applied to design independent
control of each joint of the robot. The second order servosystem model is also used in this
section to test the proposed learning control scheme. The scheme is then applied to
improve the performance of the robot model in section 3.

The dynamics of the servosystem can be represented, by ignoring the damping factor for
the sake of simplicity, as

where 0 is the angular position (a function of time, t)

T c is the control torque
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I is the moment of inertia of the servo, and

0 is the second derivative of 0 with respect to time

It is necessary to feedback the angular position, 0, and its rate, 0, to obtain a stable

position control system. An integral feedback of the position may also be used to obtain a
higher speed of response. However, an integral feedback increases the order of the system
and introduces oscillations in the system response. These characteristics are not desirable

for the present application and hence only a proportionai plus derivative controller is
considered for stabilizing the servosystem as shown in Fig. 1. The characteristic equation

of the closedloop system can be written as,

s 2 + (K2/I)S+ (K l/I) = 0 (2)

This equation may be compared with the damped oscillatory system

s 2 + 2_O_nS+ COn2 = 0 (3)

where _ is the damping ratio and (on is the natural frequency of the system. It is desirable

to have a high value of con to get a large bandwidth of the system. The stability of the

second order system is guaranteed as long as K1 and K2 remain positive. However, the

feedback gain value K1 can not be increased beyond a certain a limit (due to the practical
limitations of the actuator) in an effort to increase the bandwidth of the system. Within

these limits, the feedback gain values are obtained using the relations (obtained from Eqs.

(2) and (3)) as,

K I = _n2i and K 2 = 2_n I (4)

The rate feedback gain, K2, is assumed to achieve critical damping in the closedloop

system. For such a case, the system will have the highest speed of response corresponding
to the lowest settling time and for a given bandwidth of the system. Fig. 2 shows the
transient response of the second order system for a step input and for the selected feedback

gain values.

Case (a) K 1 = 100 K 2 = 20 COn= 10 rad/sec

(b) K 1 = 144 K 2 = 24 o n = 12 rad/sec

(c) K 1 = 625 K 2 = 50 COn= 25 rad/sec

Case (c) shows the lowest rise time of approximately 0.2 sec. The same feedback gain
values will be considered later to control the robot arm joints.

2.2 A Learning Control Scheme

The second order system considered may be represented as (from Fig. 2),

(IS 2 + K2S + g 1)0 = Oc
3

(5)



1, the command function, Oc, is the same as the desired trajectory, Oc, is

Od - Oa) + b(Od - Oa) (6)

constants proportional to the error rate and the error, respectively. For

the command signal, 0 C , is modified as,

)c + Oe (7)

the system to this modified command signal is determined. The new error

)btained using Eq. (6) The command signal is again modified according to

_, command signal is used in Eq. (2.5) and the response of the system is

:process is repeated until the errors, 0e, fall within an acceptable value.

xty is possible for the second order system considered here. Eq. (5)
second order system is written in a slightly different form for the kth

Ok = eek (8)

:eration the equation as

I + K lek+l = 8ek + 8e k (9)

k) + b(e_ - Ok) (I O)

18) from Eq. (9), we get

= eek (11)

tk

aak + bdk (12)

('r) dx ( 13)



Then

Jk+1

t

= I ezek+1 (x) dx

0

t 2

- J
0

Expanding and using equations (13) and (10), we get

t
s

dk - Jk+ I = I

0

÷

{(2aq - az- 2b) dk z + (2bp - bz) dkz} dx+ adkZ(t)

(ap + bq -ab) dk2 + 2bdk(Jk

z O, for aZ> 2b

a < 3q/2

b <2P and for small error rates
(14)

Eq.(14) gives sufficient conditions for the guaranteed convergence of the error to zero
value with each step of the proposed iteration scheme.

Since only the command signals are being modified, the torque requirements on the
actuators will not drastically change provided the initial errors are small. The feedback
values selected for the application in this section are K 1 = 100 and K 2 = 20 and

corresponds to a closedloop frequency of 10 rad/sec. The response of the servosystem to a

command input,

OC = sin (cot)

is shown in Fig. 3 for co = x rad/sec. The actual trajectory shows a phase lag and an

amplitude modification. Application of the learning control scheme shows reduced errors
with the f'trst iteration (Fig. 4) and the third iteration (Fig. 5) and for the parameters a= 0.1

and b= 0.9. The figures compare average errors associated with each iteration. The average
5
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AE = i--I (15)
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xlber of points on the trajectory. Higher values of c0 were considered next

tahoe of the iteration scheme was studied. Fig. 6 shows the average error

each iteration for various values of "a" and "b" and for to = 2 x rad/sec.
fly show that for the case in which a = 0, the errors tend to increase after a
n accordance with the derived conditions (Eq. (14)). Similar results are

for to --4 _ rad/sec. In general, the results show that the rate of

,'teases with increasing values of "a" up to a certain value. For the present

best results are obtained with a= 0.2 and b= 0.8 at all values of to. The

ing error rate in the modification procedure is obvious from Figs. 6 and 7.
,bserved that the conditions given by Eq. (14) are rather conservative

1 Phase Adjustment Technique

he previous results that there is a unique command function, 0 c , for

[trajectory, 0 a , will be the same as the desired trajectory, at least for

!single-output systems. In the previous examples, inclusion of the error

helped a great deal in arriving at the unique command function with only a
l'he next obvious question is whether it is possible to obtain the ideal

on with a single iteration so that the resulting trajectory would follow the
y. An attempt has been made in this section to answer the question.

_f the second order system shows that the output of the system follows the
ty, provided the frequencies associated with the function are well within the

fla. As the input frequency approaches the system bandwidth, the output of
's marked deviation from the input signal. The input-output relationship is

and the gain plots in which the phase difference and the ratio of the

._output to the input are plotted as a function of the input frequency.

the previous example, 0 d = sin(tot), with to = x rad/sec. The time

_ystem is as shown in Fig. 3., for the f'trst trial. A modification scheme

was employed with a--0.1 and b=0.9. The actual trajectories obtained

)n and third iteration are shown in Figs. 4 and 5, respectively. From Fig. 3
ues of phase (-0.5969 rad) and gain (0.91) were obtained. The command
_dified as

1 sin(tot + 0.5969)

tory obtained for this modified command signal is shown in Fig. 8. The
and the desired trajectory overlap within the accuracy of the plotter. Thus,
linear system, it was possible to obtain a modified command signal to
ed trajectory without an iteration scheme. This method will be applied to
_lel of three-link robot system in section 3, which is an example of a
Liesystem.

6
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3.0 APPLICATION TO A THREE-LINK ROBOT

3.1 Dynamics of a Three-Link Robot Arm

Fig. 9 shows the selected coordinate reference frame for the three-link robot arm. X, Y, Z,
is the inertial system with the origin at joint 1. The fourth coordinate frame has the origin
fixed at the tip of the robot arm. The fhst link can rotate only about the vertical axis Z,
carrying the second and the third links. The second link can rotate about an axis fbced in
link 2 and is normal to both the first and the second link. The third link moves about an

axis parallel to the axis of rotation of the second link.

The three transformations are represented_.by the following matrices
-- --]

-sl o o x,l
i

= C I 0 0 YI

0 I d I ZI

0 0 I I

m

CI

Sl

0

0

i

All rl

m m

X

Y

Z

1 I

OF r --
(16)

Xll
Vll
ZII

I

or rl

i

I

= 0

0

0

= [ AZ] rz

0 0 0

C z -S z Czd z

SZ CZ Szdz

0 0 I

XZ

YZ

ZZ

I

(17)

i m

XZ

YZ

ZZ

I

I I

or

m

I 0

= 0 C 3

0 S3

0 0

I

rz = [ A3I r3

0 0

-S 3 Csd 3

C3 $3d3

0 1

(18)

where Ci= cos 0 i, and Sj = sin 0j j=1,2,3
A point r i described with respect to link _can be related to the base coordinate by

r = [Ti] ri (19)

where, TI=[A1], T2=[A1][A2], and T3 =[T2][A3]

The dynamic equation for the robot arm is obtained as, 17
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.o

Fi = T.Dijqj + Zai_i + T. T.Dijk(_j_k

j,,1 j,,1 k,,1
+ Di (20)

where:

3 _Yp ¢3YpT
Dij = T. Trace ( Jp _ )

p = max i,j _ aqi

3

Dijk = T. Trace (c32Tp Jp _TP T )

p = max i,j ¢3qj_qk _qi

3

Di = Z -mp gT _TP T rp
i= 1 _)qi

lai is the Ith actuator inertia, nap is the mass of the pth link
g is a vector in the direction of _e gravity force

Jp is a pseudo inertia matrix for the pth link

Eq. (20) are used to compute the joint torques required. For the purpose of simulation of
the first, second and the third lir&s are assumed to have lengths equal to 0.5m, 0.4m, and
masses 4kg, and 2 kg, and lkg, respectively. The inertias of the links 1,2, and, 3 are

assumed to be 5x10 -4, and 2.5x10 -4, and 1.25x10 -4 kgr_2, respectively. Actuator inertias
corresponding to joints 1,2, and, 3 are taken to be lxl0- , 5x10 -3, and 2.5x10 -4, kgm 2
respectively.

3.2 Inverse Kinematics

The trajectory to be traced by the robot arm is given by a set of points which are usually
def'med in the base (inertial) coordinate system. Therefore, it is necessary to find the joint
angles corresponding to each point on the trajectory using the geometry of the robot. Let
us assume that the tip of the robot arm follows the given trajectory, so that a transformation
of the tip point into the base coordinates can be made as follows:

{P} =[T3] {r3} (21)

where r3 is actually the origin of the fourth coordinate system. Substituting for T 3 and
expanding we get,

Px = -S1(C2D2 + C23D3) (22)

Py = C1(C2D2 + C23D3) (23)

Pz = D1 + D2S2 + D3C23 (24)

Algebraic manipulations of the above equations give the expressions for the joint angles as

81 =-tan-1 (Xllyl) (25)

v
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_dl } _ cos_1{dZ.dzZ-d3Z} (26)

d 2dd2

Iici) z + (Zl - di)2 - dz z - d3 z } (27)

2dzd3

)rrrpute the joint angles only once in order to find the command signals
ry. This can be done off-line using the robot central computer in the
iterative technique is then applied to modify the joint angle commands to

;le errors to zero.

rol system

; employed here is to control the motion of the joints so that the tip of the
xajectory. Independent control of each of the joints based on only the
position and rate feedbacks is considered here for the sake of simplicity.
led in the base coordinate system is converted into joint command angles
kinematics. The dynamic equations (20) are rearranged for the

x_ltechniques as follows.

3 _ 3 o,

Z Dijkejek - T. Dijej

k=T j=1
j=l

-Di} / (Dii * Zai) (28)

int angular coordinates, Tci is the torque about the joint i. Control

ed from the block diagram shown in Fig. 1 as

(1(ei - ee) (29)

a sixth order nonlinear differential equation with coupled coefficients.
numerically solved here using a fourth order Runge-Kutta integration

of Learning Control Scheme

the case in which the desired trajectory for the tip of the arm is a circle.
ined in the inertial coordinate system as follows.

s(_t)

3.5 sin (cot)

(30)

am is modified so that the joint command angles are obtained from the
¢stem through a kinematic transformation. The computer time required
tpproximately 20 minutes and hence only four iterations are considered
I'he results obtained are shown in Fig. 11. There are two curves in

ling to the errors associated with X and Z coordinates. The errors in



the Y direction is not so important and is not shown here. It may be seen that the errors
tend to become smaller at a faster rate when the error rate information is included in the
command input modification procedure. Fig. 12 shows the torque characteristics of the

joints 1 and 2 before and after the application of the learning control scheme. Figs. 13 to

15 show the actual response of the robot corresponding to a=O and b=l. A trajectory very
close to the desired circular trajectory could be obtained with a=0.1 and b=l after 6
iterations (figure not shown).

3.5 Application of Gain and Phase Adjustment Technique

It was shown in section 2.3 that a modified command input could be obtained so that the

resulting actual trajectory is very close to the desired trajectory for linear dynamic systems.
However, the robots are in general are characterized by nonlinearities and varying moments
of inertia parameters. Coupling between the joint coordinates are also very significant.
Two examples of trajectory tracing, one a circle and the other a straight line, is considered
for the application of the gain and phase modification technique.

The trajectory defined by Eq.(30) describes a circle in the X-Z plane. The actual trajectory
traced by the robot is given in Fig. 13. The responses of the robot after f'u'st and fourth

iterations using the learning scheme are as shown in Figs. 14 and 15, respectively. It may
be seen that even after four iterations the trajectory traced is still not a complete circle. The
gain and phase modification technique was then attempted as follows.

The response of the system to the command trajectory which is the same as the desired

trajectory was plotted in the X and Z coordinate system as a function of time (not shown).
Ideally, X coordinate should be a cosine function and Z a sine function as given by Eq.
(30). However, depending on the value of w, there will be a phase and gain change. The
actual response was found to fit the following functions.

X = cos(tot - O. 17) (31)

Z = sin(tot - O. 19)

Modified command signals were then obtained as

X = cos(tot + O. 17) (32)

Z = sin(tot + 0.19)

The response of the robot to the modified command signal is as shown in Fig. 16. The
actual trajectory obtained is seen to be very close to the desired trajectory. It is very
interesting to see that the nonlinearity, the coupling between the joint coordinates, gravity
and the varying moments of inertias did not have much effect as far as the phase shift and
gain values are considered. The present example, however, is very simple because the
desired trajectory could be represented by simple sine and cosine functions.

The second example considered is the one in which the tip of the robot traces a straight line.
The joint angles will have to go through a nonlinear motion so that the tip of the robot could
result in a strai .ght line. Hence, this example is more complicated than the fast case. The
command runcnon m the inertial coordinate system for the example of a straight line is
taken to be

X = 0.5 - 0.5 w t

lO --_
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The respo_ system with w = 1 is as shown in Fig. 17. For the sake of simplicity,
only the Xae is considered for modification. Learning control scheme is then used
to obtain arajectory after 6 iterations as shown. For the application of gain and
phase mode, the command signal for the X coordinate is obtained as follows.

X =0.5 wt + Xe(t + tp)Xg

where X e i_r obtained as

Xe Xa

and tp is theshift obtained from the first trail. The response obtained with this
modified col is shown in Fig. 17. The phase tp is taken to be 0.18 sccs and the

gain,Xg, I.trialand error).The actualtrajectoryobtainedforthiscommand is

almostas gohe trajectoryobtainedthrough6 iterations.

The phase,t,gain,X_, were alsoobtainedby a Fourieranalysisof theerrorfunction

associated _ trajecto=ry. Fig. 18 shows the response of the corresponding modified
command (_ = 0.2 sees and Xg -- 1.117). The response appears to be at least as
good as the t_sc shown in Fig. I7. Hence, it may be concluded that the Fourier
analysis can _ to compute the phase and gain value to obtain .a .m.odified co _mtmand
and to reduc_ors considerably in the second trial. Furmer trnmrmzauon o[ error_

may be done _the iterative technique, ff necessary.

3.6 Applicalto a Real Robot

The perfonnarmprovement technique is attempted on a real robot PUMA 560. Fig. 19
shows a schem diagram of the robot. Instructions to the robot arm is given by using the

operating syste_ftware, VAL-I118. Different values of the coefficient of the error are
considered (wihe parameter 'a'=0) to study the rate of convergence of the scheme to
yield minimumron. Fig. 20 shows the performance of the robot after 11 iterations for a
desired trajectot3f t_ robot to move along the Y axis at approximately 1.5ft/sec. The
figure shows therrotin the X direction with the first attempt and after 11 iterations with
b=0.2. The crm associated with the first trial is 0.4145mm and, after 11 iteractions,
0.07ram.

The same case w_ the_ repeated with various values of the error coefficient, b, and the
average errors _aincti as a function of the trial number are shown in Fig. 21. The results
clearly show thatthe ra_e at which the average error decreases is proportional to the value of
b. However, larger values of b tends to increase the average error after a few iterations.
This trend was also observed and discussed in section 2.

The iterative technique was also applied to improve the performance of the robot under a,
variety of other 0pera_g conditions. The results show, in general, that the lower limit ot
the average error after reached (which is 0.1ram) is restricted by.the repeatability and the
noise associated with the joint sensors Further work is continmng at this time to include
the rate information in the application of the learning scheme to the real robot.

11



4.0 CONCLUSIONS

An off-line learning control scheme is analyzed here which can be used to improve the
performance of robots. Necessary conditions for the iterative scheme to reduce errors with
each iteration are derived considering a second order servo system model. The scheme is
also applied to a mathematical model of a three-link robot similar to PUMA 560. In

general, the results show that the learning control scheme reduces errors more efficiently if
the error rate information is included in the scheme. The results also show that the scheme
may increase the magnitude of the errors, if the rate information is not included in the
iteration scheme. Preliminary results of the application of the technique to a real robot has
shown that the scheme can be successfully used to improve the performance of actual
robots within the limitations of the repeatability and noise characteristics of the robots.
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